Zero-Energy Devices: Technology and Applications of Ubiquitous 6G Systems

Jiadi Zhu, Deniz Umut Yildirim, Jaeyoung Jung, Jung-Han (Sharon) Hsia, Xu Zhang, Yiyue (Alyssa) Luo, Wojciech Matusik, Jing Kong, Anantha Chandrakasan and <u>Tomás Palacios</u>

Massachusetts Institute of Technology

tpalacios@mit.edu

https://mobiletrans.wondershare.com/5g/5g-meaning.html

Previous demonstrations...

A helicopter powered by 2.45 GHz microwaves, 1964

However, 6G devices require a completely different approach

Form factor Power density Future "6G network" compatibility

8

Zero-energy systems

Rectifier + input voltage boost

- Harvest RF energy
- Increase the voltage to power electronics

Limits of rectifier technology

Antenna – Rectifier: RLC resonance to boost signal output

WiFi/5G RF Energy Harvester

X. Zhang et al., Nature 2019

Zero-energy system

First Target Application: Indoors sensing

Y

- -
- Temperature/humidity, presence detection, tag location tracking
- Harvest and store energy from 3.5GHz 5G/6G
- Use harvested energy to transmit data
- Range ~ 10m

Comparison of communication methods

Backscattering	Active transmission
 Lower power consumption No power amplifier Oscillator needs to run at only ~kHz (vs. GHz for active transmission) 	 Higher potential transmit power Instantaneous transmit power can be higher than received power Transmit frequency is independent of received frequency

Backscattering link budget

Zero-Energy Systems

Adapted from Prof. Max Schulaker (MIT)

8-inch MOCVD system for 2D materials

No damage to Si technology underneath

- Growth @ 275°C for 60 mins
- No degradation to silicon transistors

Silicon BEOL integration

MoS₂-Silicon heterogeneous-integrated SRAM cell

Zero-Energy Systems

Some potential applications....

First, we need functional fibers...

Nature Electronics 4, 193

And then, we start knitting...

To get some new "devices"...

Nature Electronics 4, 193

45

Zero-Energy Systems will enable the era of Ubiquitous Intelligence

tpalacios@mit.edu