

Winning the Fire Drill: How Not To Lose the IIoT Game

Dr. John F. Carrier Senior Lecturer, System Dynamics MIT Sloan School of Management

MIT MANAGEMENT EXECUTIVE EDUCATION

About Dr. John Carrier

- Dr. Carrier works with senior and front-line managers to improve manufacturing and business processes and serves as an on-site hands-on coach in support of projects.
- His research focuses on the competitive advantage of synchronization of operations within supply chains.
- He teaches a popular Executive Education course on Industry 4.0 and IIoT (<u>https://tinyurl.com/yafmbdqe</u>)
- He has more than 20 years of experience in a variety of corporate, entrepreneurial, and consulting environments.
- Dr. Carrier holds a BS in Chemical Engineering from the University of Michigan, a PhD in Chemical Engineering from MIT, and an MBA from Harvard Business School.

Website: www.jfcarrie@mit.edu

Big Data in Boston

- Home of
 - MIT Sloan Sports Analytics Conference
 - Greatest Hitter of All Time (Ted Williams)
 - Batting analysis from 1970
 - #4 in Career Walks

- The IIoT world, customers demand make-toorder variety at make-to-stock price and wait times
- As a company, you still need to meet today's production and make today's profits
- How do you sequence in new technology into your "human system" without going bankrupt?

The Journey We Are Trying to Avoid ...

ШīГ

Source: https://john.do/emotional-journey-creating/

The last wave of technological change ...

"No longer must valuable engineering personnel ... now in critical shortage ... spent priceless creative time at routine figuring."

Case Study: Tech Adoption

Location: Germany, 1973

The problem:

- You want to sell calculators
- Engineers aren't buying

FRONT	7. ees 9. 1000 100 100 100 4. 4. 5. 1. 2. 3. 3. 3. 3. 3. 3. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5
Faber-Castel TR3	DR $\stackrel{+}{\pi}$ X ^Y M+ MR CM \div \Re C \circ red X+Y X+M + - + X = E

The Innovation: Make it easier for the "customer" to make the transition

Fingerspitzengefühl

Where can a manager buy ...

- Situational Awareness
- Synchronization

Amazing technologies that may experience slow adoption

Remember these?

Will this fare any better?

Or in the words of Theodore Leavitt ...

People don't want to buy a quarter-inch drill, they want a quarter-inch hole. -Marketing Myopia (1974)

What are we trying to buy with IIoT?

An Analogy: The IIoT as Compared to the Human Body

Element	Human Body	Industrial Internet of Things
		Temperature, pressure,
Sensors	Sensory Neurons	concentration, light/camera, sound
Communication	Interneurons	Network
Command	Motor Neurons	Network
Actuators	Muscles	Robots, Pumps, Turbines, Furnaces
Quick Response Loop		
(feedback)	Ganglia	Fog Computing
		Digital Twin, Analytical and
Analysis	Brain	Statistical Apps
Synthesis and		Artificial Intelligence and Machine
Learning	Brain	Learning
	Brain has over 100 trillion	31 billion connected devices by
Connectivity	synapses	2020
Development Period	Several hundred million years	approximately 150 years

... what happens when you lose a sensor?

Adoption of IIoT will be very different than in the past ...

Risk management is key to IIoT adoption

- Traditional Investment ("buy")
 - Large capital investment
 - Long dormant period
 - "flip the switch" moment
 - Disappointment, loss, and turnaround
- New Investment ("pay to use")
 - Use in increments
 - Implement, correct, and make profit
 - Expand and scale to match cash flow

SaaS has fundamentally changed the financial model

- All elements of the stack are available on a subscription basis and fully scalable
- Simple robots can now be rented at a competitive rate to local labor
- Companies are looking to validate a real use case before committing to greater investment
- Unlike past ERP purchases, implementation of IIoT will be based on agile

 $\ensuremath{\mathbb{C}}$ Massachusetts Institute of Technology

Example: From Legacy to IIoT in One Day

- Mid-sized US manufacturing company designs work cell for low volume, high industrial vibrators
- Investment based on reaching 90% of full production in six weeks
- Need simple way to collect, analyze, and report cycle time data in real time
- Team tests a simple IIoT device measuring current draw

Example: From Legacy to IIoT in One Day

ds8_s9_03_01

Real Time Display (via Cloud)

Example of a "Smart" City Use Case

Creativity abounds, but standards are needed

An early example of System Improvement

 A famous engineer and an 'unsolvable' problem

• A new business model of being paid by the result and not time on the assignment

• Even in the age of "a dollar a sensor", you still need to know where to put it

• The original digital twin – the model of the system in Steinmetz's brain.

The Model: how we think the system works (expected)

The System: how it does work (actual)

The Data: the difference between expected and actual (also known as 'negative feedback')

STOP AND THINK: APPLY TO YOUR SYSTEM

Culture and Mental Models?

Ed Schein Emeritus Professor Sloan School of Mgmt

Three Levels of Culture (Schein)

Visual organizational structures and processes (hard to decipher)

Strategies, goals, philosophies (espoused justifications)

Unconscious, taken for granted beliefs, perceptions, thoughts and feelings (ultimate source of values and action)

The Spreadsheet is NOT the System

Let's look at your system ...

What happens when we try to introduce new technology (like IIoT) into this system?

Schrodinger's Valve: Is it open or closed?

Application to Knowledge Work

June 27, 7:10 AM

Using LL to detect hidden factories..

A closer look ...

Does this look familiar?

What's the value of shrinking the hidden factory tail by half?

The Value Stream – how we value TIME

THE 3 TYPES OF VALUE STREAM ACTIVITIES

Term	Who pays for it	Definition
Value add Customer	Customer	1. Customer will pay for it
		2. Form, fit, or function of product changed
		3. It was done right the first time
Non-Value Add – or– Business Value Add	Business	Sustains the business
WASTE	Nobody	No one will pay for it (or we ALL pay for it)

What is a minute worth in your system?

How does this provide a business model for IIoT?

- Identify systems with valuable total assets
- Find the "clock" in the system and measure its utilization time – does it "de-synchronize"?
- Look for root causes and ways better information and preparation could improve

This is how the business case is made ...

Look for customers with expensive wait times

Continuous Improvement vs. AI

Action	5 S	AI
Find what is		
needed	Sort	Search
Identify optimal		
sequence	Set in Order	Optimization
Reduce external		
noise	Shine	"Noise"
Standardize	Standardize	[ASSUMED]
Continuously		
Improve and Adapt	Sustain	Adaptive Learning

An adaptive system for implementing sustainable change (POCA loop)

POCA Formulation for an Adaptive Operating System				
Phase	Defintion	Tools		
		5S		
	Organize the Workspace to	SMED (Changeover Reduction		
P repare	Execute According to Plan	Poke-Yoke (error-proofing)		
		Value Stream Map (Lean)		
	Watch how the work actually	Control Chart (Six Sigma)		
O bserve	flows vs. plan	Little's Law, Hidden Factories		
	Pull defects out of the flow of			
Correct	work	Yellow Lines (quality checks)		
	Re-organize workspace to			
	reduced need corrective			
Adapt	actions	Pareto Chart		

Better information, analyzed and shared in real time amplifies the tools © Massachusetts Institute of Technology

Example: Plant 247 G

The key message

- The IIoT is a low-priced commodity
- There are virtually no barriers to obtaining the technology
- The winners will be determined not by who has the most technology, but by who knows how to best adopt it into their current system

KNOW THY SYSTEM

