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Current Power Grids and Control
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Significant drivers are causing drastic changes in the Power Grid landscape I
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Driver 1: Increased Demand
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* Significant improvements in electrification are expected to halve number of
people without access to electricity by 2030 from 2016 levels

e Over the next 25 years, electricity will play an increasing role in the

transportation industry
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Driver 2: Decarbonization
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World Energy Outlook 2017, IEA

Renewables meet 40% load growth through 2040
Coal net additions are following a decreasing trajectory with absence of CCS
By 2040, 40% installed generation will be renewable

4
MIT ILP, R&D Conference, November 14-15, 2018 B



Intermittency: Wind Energy
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From Integration of renewable resources, CA ISO Report, Aug. 2010.

“In almost every operating hour, wind could be producing across the full
range of its potential production, from close to zero to almost maximum output.”
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Uncertainty: Wind and Load
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Wind uncertainties are almost as large as the load variations!
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A Cyber-enabled Smart Grid

An end-to-end cyber-enabled electric power
system, with bi-directional power flow, that

* Decarbonizes and integrates green energy
resources

* Enables efficiency, effective demand-side
management, and customer choice

e Operate resiliently against cyber and physical
attacks
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GRID CONTROL:
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SMART GRID CONTROL:
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New Tools

 Demand Response — Flexible Consumption
e Advances in Storage Technologies
* Advances in Sensors (ex. PMUs)

* Advances in Power Electronics (ex. Smart
Inverters)

e Advances in Actuators (ex. FACTS)

e Advances in theory — distributed optimization
and control
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Vision for Smart Grid Controls

Smart grids are expanding the traditional Control systems will be essential in
notion of a power system, enabling the closing the numerous loops in the new
interconnection of domains often system-of-systems and in realizing the

traditionally considered in isolation. promised benefits of smart grids.
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Figure 1: Time Scales for Power System Planning and Operation
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Operation

e Control for stability
* Rotor angle
* Frequency
* Voltage
* Optimization
* Power losses

nstitute for Energy and Environment MAY 2014)
Planning
* Markets — SCUC, DAM,RTM

* Regulatory concerns
* Policies

* Reactive power

Reorganization of time-scales in markets and control islgpeeded
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A Cyber-enabled Smart Grid
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Dynamic Framework for Smart Grids

Outline

Bulk Energy and Transmission
— Dynamic Market Mechanisms for Real-time Markets

Natural Gas and Electricity Infrastructures
— Gas Prices and Gas Bid-volatility
— Joint partnership between Wind and Natural Gas producers

Transportation and Electricity Infrastructures
— Electric Rail Network & Transactive Control

Road Ahead
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BULK ENERGY AND TRANSMISSION:

(A) DMM FOR REAL-TIME MARKETS
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Economic dispatch today

Collect cost curves Find optimal dispatch Communicate set-points

Periodic with a reqular interval.
Single iteration process.
Centralized computation.
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Our solution: Dynamic Market Mechanism (DMM)

Negotiate and converge to an optimal solution

Most recent information is included.
Individual constraints remain private.

Benefits when addressing:
0 Fuel uncertainty
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DMM and shorter dispatch interval

Negotiate and converge to an optimal solution

Implement dispatch on shorter
intervals.

N

@ Opportunities for addressing:
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SN N N\
I @l 98 @

Sufficiently long period . renewable generation
for convergence Implement set-points 0 High regulation requirements

in presence of renewables
Automatic
generation

control

Start negotiations

>

Inflexible load

Generation
set-points

Economic dispatch interval Time

i " a@
II MIT ILB, R&D Conference, November 14-15, 2018 ‘ - e



Integrated DMM (economic dispatch + AGC)

Conventional architecture

Energy Regulation
Market Market

Automatic
Generation
Control

Assumption of magnitude and time-scale
separation between OPF and AGC.

Large penetration of intermittent energy
represents a challenge.

Proposed approach

Energy
Market

Regulation
Market

Automatic
Generation
Control

Agqgreqated feedback from AGC

Simultaneous decisions at both markets.
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DMM structure

* Approach: Iterative negotiations over a wide area network*
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Maximize utility
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Modified IEEE 118 Bus Test Case

Bus consists of:

e 45 conventional generators

* 9 renewable generators (30% penetration)
e 7 flexible consumers (10% penetration)

* 186 transmission lines =& e e i

® Wwind Generator

(O Demand Response
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Results: IEEE-118 bus
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(A): Validation in IEEE 3120 bus

* Wholesale markets:

Validation in IEEE 3120 bus:

GenCo/ConCo
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NATURAL GAS AND ELECTRICITY
INFRASTRUCTURES

(B): MODELS FOR ESTIMATION OF
GAS PRICES AND GAS BID-
VOLATILITY



Role of Markets and Control in Smart Grids
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IEEE 118-bus Electricity Network
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Implications of Renewable Generation
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e Goal: To validate the figure on the right using a computational model
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Interdependency between NG and Electricity Networks — Market Flow

Natural Gas Network IEEE 118-bus Electricity Network

] — — ) - +q: |
& £k
PLI py PL3py PL5 PLSpy PL7 py PL6 ’g - “
@ PL2 PIA]_‘HH_._H_’_H """"
| T}
I 12 13 o 17 16 I5 i
‘ Natural Gas

Gas i‘"

i Power Plant Thef
PL20 pu PL1Y PI.:i PL17 Marketer PL24 (NGPP) DlspatCh . fr 2 L= .
__ PLI6G PL2I 1 T —r
16 115 53 ill-l- 113 1n7 [18 119 120 —v—— . : C
éus “ll Renewable ¢
Penetration
| I I |
| | l I
NGPP bids to NGPP gets Bilateral transaction Adjustments to
ISO dispatched amount between marketer and  dispatch in real time
to produce NGPP markets
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Market misalignment in Real-time Market

* Only 3 instances when NGPPs find out if additional gas will be available
* Unequal access — gas is available only if RCITs release gas
 NGPPs may not be able to meet their dispatch

Timely Evening Intraglay _ IntraFIay . IntraFIay .
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Implications of Renewable Generation

I I
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* If gas plants cannot meet their dispatch needs hourly and make up for renewable
generation fluctuations, there can be a power imbalance, leading to frequency errors
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Interdependency between NG and Electricity Networks — Unequal access

Natural Gas Network (MA) IEEE 118-bus Electricity Network
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Two main issues:
* Market misalignment
* Unequal access to gas between NGPPs (GenCos) and RCITs (LDCs)
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Regression Model

PSS = 528 + 0.90xp™® — 1.37x5% + 1.22x, "°P°" — 0.09 x; °T49°

P£%: Gas price paid by Gas Fired Generators (GFG)

Xy, W3 Normalized volatility in Wind and Solar Generation

xZ%: Normalized Gas generation

stora e
x, O 9¢: Normalized Gas storage

x,IjHSPOt : Normalized Henry Hub spot price

e Regression parameters identified using MA data from 2009 to 2015
e Extrapolated to predict gas-prices in 2030 and beyond

PSas = 528 + 0.908p"° — 1.3725% + 1.22%, "°P°" — 0.09 x; °T49°

. ”WS : Volatility in Predicted WS-Generation
. xkas Predicted Gas-Generation

2, PO From $2.63 in 2015 to $5 in 2030

storage .
X, 9¢. Assumed to remain the same

N
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Prediction of Gas Prices
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Results of Gas Bids

Table 5 Average volatility in GFG bids

Scenario Volatility
2015 ~0
Scenario 1 (2.5 to 10%) ~0
Scenario 2 (2.5 to 20%) 0.002
Scenario 3 (2.5 to 30%) 0.1

* Main conclusion: With increasing penetration of WS, there is greater

uncertainty for GFGs to obtain gas.
* Therefore they may be inclined to bid even less frequently in 2030

than 2015.

A possible solution: A joint partnership between Natural Gas Power
Producers (NGPP) and Wind Power Producers (WPP)
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Wind Integration — Volatility Management

Problem:

* Use of ancillary markets and peaker units to accommodate wind
power socializes costs [1].

* Wind will face penalties for unmet commitments [2].

Solution:

e Contracts between Natural Gas and Wind Power Producers (NGPPs
and WPPs) to fulfill unmet commitments.

 NGPPs benefit from exclusive energy rights to WPP shortfalls.

 WPPs benefit from reduced penalty payments enableing more
aggressive bidding and increased energy market income.

[1] Brown, P. How does wind generation impact competitive power markets?. Congressional Research Service, 2012.

- [2] Bitar, E., et al. "Selling random wind.” 2012 45th Hawaii International Conference on. IEEE, 2012
[ e (o)
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Simulation — WPP & NGPP Selection

: '// WPP: Record Hill-50.6 MW ,
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/J 7 . 1 | Roxbury, ME pricing node
sl N
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Tennessee NG Pipeline-Operating
Electric === Portland Pipeline

transmission
Maritimes and Northeast Pipeline

I I I N . Map developed in SNL Energy-S&P Global Market Intelligence -
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Simulation — WPP Next Day Generation Forecast
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Simulation — WPP Bidding Sample
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Simulation — Improved Renewable Utilization
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Simulation — Reliability Contract Yearly Cash Flows

Contract Between WPP and NGPP NO YES

Power Plant WPP NGPP WPP NGPP
Day-Ahead Energy Market Income| $2,223,008 | $ 19,699,267 | S 4,253,378 | $ 19,699,267
Contract Payment S - S - |-S 2,484,849 | S 2,484,849
Day-Ahead Penalties -$1,520,554 | S - S - |-S 238,007
Fuel Cost S - |-S 7,690,365 | S - |-S 8,671,295
Variable O&M Cost S - |-S 1,446,424 | S - |-S 1,646,660
Fixed O&M Cost -S 534,633 '—S 9,368,111 |-S 534,633 |-S 9,368,111
Profit S 167,820 | S 1,194,367 | S 1,233,895 | S 2,260,042

a setto 3

f calculated as 1.538

Renewable utilization
increase from 66% to 78%

Yearly profits increase by

$1.07 million for each party

MIT ILP, R&D Conference, November 14-15, 2018
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(C): TRANSACTIVE CONTROL OF
ELECTRIC RAIL SYSTEMS
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Smart Railway Grid Optimization

Opportunity:

* RESGs are adopting communication and automation technologies that
could allow them to respond to pricing signals or follow optimized
trajectories

* Bidirectional power flow from trainsets is enabled by regenerative
breaking

* Operators operate conservatively (15% margins in US schedules, 7% in
Europe [1])

Objectives:

1. Optimize trajectory with pricing structure that varies in space and time
(depart from work minimization) — Spring 2018

2. Develop transactive control methodology for rail system which maximizes
joint electric-transit social welfare — Fall 2018 through Spring 2019

[1] Transit Matters. “Regional Rail for Metropolitan Boston.” Boston, MA.

I I I W == (JRL: http://transitmatters.org/regional-rail-doc
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Problem Formulation

For rail routes R that span space S in time T, we pose the cost minimization
problem:

min 7 7 7 P(r,t,s) xm(r,t,s)
R T S 1

wn
S—F

=t

tStOp,T,l stop,r,imin

<t

tstop,r,i stop,r,imax

P(r,t,v) = P,in
P(r,t,v) < P4y
v(r,t) =0

v(r,t) < Vpmax
a(r,t) = an,n
a(r,t) < amax

Fr (r,t) = FT,min (v)
10. Fr(r,t) < Frpmax(v)

VR NS RN WN N

Work minimization
benchmark with fixed 7
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Amtrak North East Corridor Railway — 60 Hz Electrification
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A Cyber-enabled Smart Grid

Summary

Bulk Energy and Transmission
— Dynamic Market Mechanisms for Real-time Markets

Natural Gas and Electricity Infrastructures
— Gas Prices and Gas Bid-volatility
— Joint partnership between Wind and Natural Gas producers

Transportation and Electricity Infrastructures
— Electric Rail Network & Transactive Control

Road Ahead

— Distributed Optimization and Control
— Framework for Retail Markets

— A combined study of market-design and control spanning multiple time-

scales needs to be carried out.

MIT ILP, R&D Conference, November 14-15, 2018
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