With my research group, we have decoded several challenging scenes with important applications for industry. For example, we have peeked inside integrated circuits non-invasively to work out if their manufactured topology matches the design file; quantified mechanical effects in the retinal fibrous structures and vasculature to forecast glaucoma progression; and measured the particle size distribution in drying powders toward early detection of undesired agglomeration events.
In all these cases, even the most advanced state-of-the-art imaging methods cannot capture the relevant phenomena with sufficient fidelity or economy. It is a unique feature of our work that physical models are explicitly weaved into data-driven models. Thus, our algorithms perform well in test cases, and are also interpretable and resilient. We have also demonstrated significant savings: for example, reduction by two orders of magnitude in total scanning and computation time.
Funding acknowledgments: Parts of this work were funded by the United States Intelligence Advanced Research Projects Activity (IARPA); Singapore’s National Research Foundation (NRF); and by Takeda Development Centre Americas, Inc. (successor in interest to Millennium Pharmaceuticals, Inc.)