Principal Investigator Jesus del Alamo
Project Website http://mtlsites.mit.edu.ezproxy.canberra.edu.au/users/alamo/Projects/Project5.htm
As concerns grow over the feasibility of scaling silicon CMOS devices to the nanometer regime, III-V channels have shown great promise for integration into future-generation logic devices due to their outstanding electron transport properties. However, while impressive III-V n-MOSFETs have been demonstrated, this success has not yet been translated to III-V p-MOSFETs, due to a generally lower hole mobility. Amongst all III-V materials, the antimonide system has the highest hole mobility, making it a likely candidate for the development of high performance III-V p-MOSFETs. At MIT, we are exploring the suitability of InGaSb for p-channel MOSFETs for future sub-10 nm CMOS applications.
Our research has focused on device designs that incorporate strong compressive strain which is known to enhance hole mobility. In this regard, we have demonstrated InGaSb p-channel quantum-well (QW) MOSFETs that incorporate uniaxial stress through a self-aligned nitride stressor. We have realized improvements in transconductance that exceed 40% with respect to strain-free devices. In addition, we have developed a new approach to ohmic contacts to InGaSb FET structures that has yielded large improvements in contact resistance and in the transport characteristics of completed devices.