Principal Investigator Tal Cohen
From space crafts, cars and buildings to hand-held products like cell phones, tablets and micro-scale electric devices, the ability of a structure to dissipate and mitigate energy upon impact and vibration is imperative to its functionality. Interested in understanding the nonlinear dynamic response of materials, we attempt to answer questions such as:
What are the characteristic velocities that induce shock wave propagation? Should shock waves be avoided in design of protective structures or promoted to enhance energy dissipation? What happens to soft tissue when it is the presence of explosive pressure gradients?
Answering these questions can lead to the design of more efficient protective structures, to understanding of planetary impacts and cratering, and to understanding the response of the human body to blast.